author Aaron Zauner Fri, 15 Nov 2013 04:18:23 +0000 (05:18 +0100) committer Aaron Zauner Fri, 15 Nov 2013 04:18:23 +0000 (05:18 +0100)
 src/ECC.tex patch | blob | history

index 953e720..379aca6 100644 (file)
@@ -6,8 +6,8 @@ it's security is based on the discrete logarithm problem
\footnote{\url{http://www.mccurley.org/papers/dlog.pdf}}
\footnote{\url{http://en.wikipedia.org/wiki/Discrete\_logarithm}}
\footnote{\url{http://mathworld.wolfram.com/EllipticCurve.html}}.
-Finding the descrete logarithm of an elliptic curve from it's public base
-point is thought to be infeaseble. This is known as the Elliptic Curve Descrete
+Finding the discrete logarithm of an elliptic curve from it's public base
+point is thought to be infeasible. This is known as the Elliptic Curve Discrete
Logarithm Problem (ECDLP). ECC and the underlying mathematical foundation are not easy
to understand - luckily there have been some great introductions on the topic lately
\footnote{\url{http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography}}
@@ -27,7 +27,7 @@ of curves and curve points chosen by different standardization bodies such
as the National Institute of Standards and Technology (NIST)
\footnote{\url{http://www.nist.gov}}. Wich were later widley implemented
in most common crypto libraries. Those parameters came under question
-repeatedly from the cryptographers
+repeatedly from cryptographers
\footnote{\url{http://cr.yp.to/talks/2013.09.16/slides-djb-20130916-a4.pdf}}
\footnote{\url{https://www.schneier.com/blog/archives/2013/09/the\_nsa\_is\_brea.html\#c1675929}}
\footnote{\url{http://crypto.stackexchange.com/questions/10263/should-we-trust-the-nist-recommended-ecc-parameters}}.