author Aaron Kaplan Wed, 13 Nov 2013 10:51:46 +0000 (11:51 +0100) committer Aaron Kaplan Wed, 13 Nov 2013 10:51:46 +0000 (11:51 +0100)
 src/ECC.tex patch | blob | history

index c175cd5..9988bd7 100644 (file)
@@ -1,10 +1,10 @@
-\section{Elliptic Curve Cryptography}
+\section{A note on Elliptic Curve Cryptography}

Elliptic Curve Cryptogaphy (simply called ECC from now on) is a branch of
cryptography that emerged in the mid-80ties. Like RSA and Diffie-Hellman
it's security is based on the discrete logarithm problem
\footnote{\url{http://www.mccurley.org/papers/dlog.pdf}}
-\footnote{\url{http://en.wikipedia.org/wiki/Discrete_logarithm}}
+\footnote{\url{http://en.wikipedia.org/wiki/Discrete\_logarithm}}
\footnote{\url{http://mathworld.wolfram.com/EllipticCurve.html}}.
Finding the descrete logarithm of an elliptic curve from it's public base
point is thought to be infeaseble. This is known as the Elliptic Curve Descrete
@@ -24,7 +24,7 @@ discussion involved recommended sets of curves and curve points chosen by
different standardization bodies such as NIST. Those parameters came under
question from various cryptographers
\footnote{\url{http://cr.yp.to/talks/2013.09.16/slides-djb-20130916-a4.pdf}}
-\footnote{\url{https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html\#c1675929}}
+\footnote{\url{https://www.schneier.com/blog/archives/2013/09/the\_nsa\_is\_brea.html\#c1675929}}
\footnote{\url{crypto.stackexchange.com/questions/10263/should-we-trust-the-nist-recommended-ecc-parameters}}.
At the time of writing there is ongoing research as to the security of
various ECC parameters